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Coherent Structures

By CHAItLES (3. SPEZIALE 1

In order to develop more quantitative measures of coherent structures that would have compar-

ative value over a range of experiments, it is essential that such measures be independent of the

observer. It is only through such a general framework that theories with a fundamental predictive
value can be developed. The triple decomposition

=,_+,_ +_, (1)

(where _ is the mean, _bc is the coherent part, and _b_ is the random part of any turbulent field _b)

serves this purpose. For a statistically steady turbulence which possesses coherent structures with

a dominant temporal frequency f we can take (see Hussain 1983)

= lim 1 --I T
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N....*co N
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where _b' = q_- _, tl = i/f, and < • > denotes the phase average. For more general turbulent flows

(that are not necessarily statistically steady or do not possess coherent structures with a dominant
temporal frequency), on can take

N

= lim I ZN--,o0 N _(i) (x, t) (4)
i=1

where an ensemble average is taken over N repeated experiments with the same initial and bound-

ary conditions. The coherent part of the turbulence can be taken to be

¢c =< 4,'{E> (5)

where < .}E > denotes a suitable conditional average of _bI (i.e., an ensemble average over flow

structures subject to the occurrence of some event E. With such triple decompositions, the

coherent and random parts of the turbulence will be the same for all observers (see Speziale 1986).

It should be noted that double decompositions (see Hussain 1983, 1986) give rise to coherent

and random parts of any turbulent field ¢ that, in general, depend on the observer. Double

decompositions should therefore only be used when the mean flow vanishes or is negligibly small

compared to the coherent notion (see Speziale 1986). Otherwise, one runs the risk of extracting

flow structures that are overly biased by the observer.

The equations of motion for the mean and coherent flow fields, based on the triple decomposition
(1), can be written in the form (see Hussain 1983):

D_i Op 0

Dt - 0_, +,.v'a,- _-(,,._uc, +_) (6)
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Duci Opc Of_i Ouc

Dt - Oz-'--i,+ uV2 uc" - u,_ Ozj ucj Ozj

DfLi Op 0
+ uV2_i - -- < urlu_j >

Dt Omi Ozj

(7)

where v is the kinematic viscosity of the fluid, p is the modified pressure, and u = _ + Uc + u_ is

the velocity field which is subject to the continuity equation which yields the constraints

v._=o (8)

W'_c =0 (9)

v. a_ = o (lO)

In order to achieve closure of the equations of motion (6)- (10), the Reynolds stress terms

< uriur_ >, urlur_ (11)

need to be modeled. The time-averaged Reynolds stress url u,. i can be modeled using the currently

popular two-equation models or second-order closure models (see Launder, Reece and Rodi 1975

and Lumley 1978). The phase-averaged Reynolds stress < uri u_j > primarily serves as an energy

drain on the coherent motion and thus it is plausible that it could be modeled using a gradient

transport hypothesis (see Hussain 1983). Hence, eddy viscosity models of the form

( Ouc, Ouc_ )
< UriUr'i _>: --liT _ O_Cj "l'-

(12)

can be considered where UT is an appropriate eddy viscosity (sufficiently far from solid bound-

aries, the Smagorinsky model can be tried). This approach, which bears a certain resemblance

to large-eddy simulations, has an advantage in that the coherent motion uc is calculated directly

Furthermore, the level of computation required is substantially less than that needed for a di-
rect numerical simulation since a coarse mesh can be used (the fine-scale turbulence is modeled)

and for some problems (e.g., turbulent mixing layers) the coherent motion is approximately two-

dimensional. In my opinion, there is a good chance that such an approach could yield useful

new information concerning the nature of coherent structures and it is well worth pursuing future

investigations along these lines.
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